EB15-4 73-0176

Volume 19, number 4

CHEMICAL PHYSICS LETTERS

15 April 1973

RAMAN INVESTIGATION OF HIGH-PRESSURE "DISORDER–ORDER" PHASE TRANSITIONS IN NH₄Br AND NH₄Cl*

Y. EBISUZAKI

Department of Chemistry[†], University of California, Los Angeles, California 90024, USA

Received 30 January 1973

 $NH_4Br II-V$ and $NH_4Br V-IV$ phase transitions and the associated Raman spectra are reported. The spectrum of $NH_4Br V$ and the changes accompanying the $NH_4Br V-IV$ transition are shown to be similar to the spectrum of "disordered" NH_4CI "II" and to the changes at "disorder-order" NH_4CI "II"-IV transition.

1. Introduction

NH₄Cl and NH₄Br are two of the more extensively studied ammonium halides. Although they have several similar solid phases, the reported "disorder-order" phase transitions of the two systems are surprisingly different [1-4]. Only one "cooperative disorderorder" phase transition ("II"-IV) has been reported for NH₄Cl, while at least four such transitions between several ordered and disordered phases have been reported for NH₄Br. At atmospheric pressure, for example, three solid phases of NH₄Br (NH₄Br II, III, and IV) are known which have CsCl-like basic structural units; NH4Br II is "disordered", while $NH_4Br III (D_{4h}^7)$ and $NH_4Br IV (T_d^1)$ are ordered. A high-pressure phase (NH₄Br V) also has been reported. [5], and the phase boundaries between $NH_4Br V$ and NH₄Br II, III and IV have been determined to 7 kbar; but no detailed spectroscopic or structural evidence has been given about NH4Br V or about the associated high-pressure phase transitions [6] which would establish the structural relationship between NH₄Br V and other phases of the ammonium halides.

This paper reports the results of studies by Raman spectroscopy of the nature of the $NH_4Br II-V$ and $NH_4Br V-IV$ phase transitions and on the character

* Supported, in part, by NSF Grant GH 33079. † UCLA Contribution No. 3056.

SEP 1 3 1973

of the structure of NH4Br V in relation to other ammonium halide phases. The spectroscopic evidence about NH₄Br described herein, when compared with similar results about the "disorder-order" transformation of NH₄Cl at high pressures, suggests that the similarities between NH₄Br and NH₄Cl are much closer than previously supposed. The Raman spectrum of NH₄Br V and the changes of the Raman spectrum of NH₄Br which accompany the NH₄Br V-IV transition are remarkably similar to the spectrum of "disordered" NH4Cl "II" and to the changes at the "cooperative disorder-order" NH₄Cl "II"-IV transition. This correspondence between NH₄Br V and "disordered" NH₄Cl "II" implies that there is a difference between the degrees of order of NH₄Cl "II" and NH₄Br II such that the chloride is more ordered. These results also raise questions as to whether a high-temperature phase of NH₄Cl exists which corresponds more closely to NH₄Br II than does NH₄Cl "II"; and preliminary results are reported which indicate a subtle change of the Raman spectra of NH₄Cl occurs at about 8 kbar and 355°K which may correspond to the NH₄Br II–V transition.

2. Experimental

The variable-temperature, high-pressure optical cell and its calibration have been described previously [7].

CHEMICAL PHYSICS LETTERS

15 April 1973

One unfortunate limitation of the cell is that polarization studies are not possible due to the highly-strained state of the windows. NH_4Cl crystals were grown by vapor deposition which avoids formation of an eutetic ($NH_4Cl: H_2O$ at 257.8°K) [8,9]. Solution-grown crystals of NH_4Br were used since none were grown successfully from the vapor phase. These bromide crystals were carefully dried for a long time under vacuum.

3. Results

3.1. The spectra and identification of $NH_4Br V$

This discussion of the spectral characteristics of NH₄Br phases proceeds from the "disordered" NH₄Br II, which is stable at atmospheric pressure and temperatures near 300°K, to NH₄Br V and NH₄Br IV, which can be produced by isothermal compression of NH₄Br II at, e.g., 265°K. These NH₄Br results will be compared with spectral characteristics of the NH₄Cl phases; especial attention will be paid to differences between the numbers and intensities of the Ramanactive modes of the various phases and to changes of the anharmonicities of the modes that accompany the phase transformations*. Although spectra of the internal† and lattice modes change with pressure and with temperature, the largest changes occur for the low-frequency modes; and only these changes are discussed here.

An interesting feature of "disordered" NH₄Br II is

- * Except that the "cooperative order-disorder" phase transition of NH₄Cl is sharp – with a significant volume discontinuity and distinct change of the frequency of v_5 (TO), for example – at 1 atm (242.6°K) and is very gradual at higher pressures (e.g., 10 kbar, 300°K) (preliminary results are given in ref. [10], see also ref. [11]), the spectral characteristics associated with the transition are essentially identical at all pressures and temperatures studied. The comparison between NH₄Br and NH₄Cl is more clear for the isothermal pathway that is adopted for this presentation than for other paths.
- [†] For both NH₄Cl and NH₄Br, the intensity of the LO component of the bending vibration of the NH⁴₄ ion, $v_4(F_2)$, increases as the crystal orders and becomes piezoelectric. The subsidiary peak, v'_4 , on the high-frequency side of v_4 disappears at the NH₄Cl "II"-IV and NH₄Br V-IV transitions respectively [12].

20

Fig. 1. Polarization spectra for "disordered" NH_4Br II (1 atm, 296°K) in two scattering geometry. The directions of incident and scattered light are given outside the parentheses while the corresponding polarization are placed inside. The asterisks indicate the spillover of scattering from peaks active in other scattering geometry.

the well defined polarization of the spectra for both the internal and lattice modes; see fig. 1. This result is rather surprising; however, it is consistent with the depolarization factors measured by Couture and Mathieu in 1948 [13] and with recent polarization spectra for several low-frequency modes [14]. The observed Raman tensors for the fundamental modes of NH₄Br are those expected for the ordered structure (T_d^1) [15]. The tensor elements for modes which become Raman inactive at the NH₄Br V–IV transition were also evaluated from the polarization spectra and are given in table 1.

Many features of the NH₄Br II polarization spectra are similar to features of the spectra of "disordered" NH₄Cl "II"; however, these phases differ significantly with respect to the number of Raman-active lattice modes and to the temperature and pressure dependences of the intensities of certain modes. For both phases, no unusual splittings of internal modes are resolved; and fairly large volume-dependent anharmonicities, as indicated by mode γ_i 's (= $\delta \ln v / \delta \ln V$) are observed. Nevertheless, as the low-frequency spectra of NH₄Br II and NH₄Cl "II" in fig. 2 indicate, the bromide lacks a peak which corresponds to the strong peak on the low-energy side of $v_5(TO)$ of the NH₄Cl "II" spectrum. Also, there is no band in the NH₄Cl "II" spectrum which corresponds to the weak band in the NH₄Br II spectrum with off-diagonal components near 78 cm⁻¹ at 1 atm and 296°K. (This 78 cm⁻¹ band disappears, and a strong band appears on the

CHEMICAL PHYSICS LETTERS

Table 1

Wavenumbers and polarization characteristics of modes which become Raman inactive upon "disorder-order" phase transitions NH_4CI "II"-IV and NH_4Br V-IV

$NH_4Br (cm^{-1})a$	Assignment, intensity
56 (α_{rr})	v7, strong
90 (α_{r3})	weak
144 b) (α_{x3}) (in NH ₄ Br V as a low energy shoulder: e.g.,	strong
176 cm ⁻¹ at 296°K and 20 kbar) 180 b) (α	strong
(in NH ₄ Br V at low temperature, e.g., <u>340</u> cm ⁻¹ at 195°K and 5.2 kbar)	v_6 , weak
<u>1470</u> (α_{x3})	υ' ₄ , weak
	NH ₄ Br (cm ⁻¹) a) 56 (α_{xx}) 90 (α_{x3}) (in NH ₄ Br V as a low energy shoulder: e.g., 176 cm ⁻¹ at 296°K and 20 kbar) 180 b) (α_{x3}) (in NH ₄ Br V at low temperature, e.g., <u>340</u> cm ⁻¹ at 195°K and 5.2 kbar) <u>1470</u> (α_{x3})

a) Wavenumbers are given for 1 atm and 296°K.

b) Mode fitted to an uncoupled damped oscillator.

c) Underlined wavenumbers have large uncertainties (> ± 10 cm⁻¹).

d) Another mode ($\approx 310 \text{ cm}^{-1}$, $\alpha_{\chi\chi}$) in NH₄Cl which disappears around the transition point (1 atm) was not included in the table since its relation to the transition was not clear.

low-energy side of $v_5(TO)$ at the NH₄Br II-V transition. Thus, NH4Br V and NH4Cl "II" have the same number of corresponding lattice modes.) Furthermore, $v_5(TO)$ and its high-energy shoulder in NH₄Br II are not so sensitive to alteration of pressure or temperature as the corresponding bands of NH₄Cl "II", whereas the pressure dependences of $v_5(TO)$ and the two associated bands of the NH4Br V spectra are similar to the corresponding bands of NH₄Cl "II". The very noticeable spectral characteristics of the NH₄Br V-IV transition – the large intensity increase of $v_5(TO)$ and large decrease in the number of Ramanactive modes - are essentially identical to changes of the spectrum of the chloride at the NH₄Cl "II"-IV transition (table 1). Thus, several striking similarities between the spectra of NH4Cl "II" and NH4Br V suggest that these phases - not NH₄Cl "II" and NH₄Br II - have similar structures.

3.2. Frequency shifts and NH₄Br phase diagram

The frequencies of the majority of the vibrational modes of the ammonium halides increase as interatomic distances decrease. However, the magnitudes of the frequency shifts depend upon the particular mode and

Fig. 2. (a) Low frequency Raman spectra $(\alpha_{XX} + \alpha_{XY})$ of HN₄Br II, V and IV. The pressure for the NH₄Br II–IV phase transitions respectively at 265°K are 11 and 22 kbar. (b) Some spectral changes accompanying the high pressure "disorder– order" phase transition in NH₄Cl at 296°K. The transition occurs between 9–10 kbar pressure in NH₄Cl at this temperature. The similarities between the upper two spectra of NH₄Cl and NH₄Br should be observed.

CHEMICAL PHYSICS LETTERS

15 April 1973

are measures of the volume-dependent anharmonicities of the modes. These anharmonicities depend upon the phase of the halide; and, thus, relatively abrupt changes of the slopes of frequency-pressure isotherms accompany the phase transitions. The transition pressures for the NH₄Br II-V and NH₄Br V-IV boundaries in fig. 3 (open circles with error bars) were established from such slope-discontinuities of frequencypressure isotherms. These transition points show smaller scatter than those obtained from the disappearance or appearance of Raman peaks. The linear slope for the NH₄Br II-V transition at high pressures is $5.0\pm0.8^{\circ}$ K kbar⁻¹; similar slope is noted for the NH₄Br V-IV phase boundary.

Additional information on the physical nature of NH₄Br II and V can be inferred by examination of the frequency shifts themselves. These shifts are most conveniently represented by mode Grüneisen constants, γ_i 's. Typical values for NH₄Br II and V at 296°K are: 3.3 and 0.75 (γ_7) ; 3.2 and 1.2 $(\gamma_5(TO))$; and 0.75 and 0.46 (γ_6) from overtone, respectively. The magnitude of γ_6 for the librational mode in NH₄Br II and V indicates that this mode is fairly anharmonic. A part of this anharmonicity probably arises from the repulsive interaction between hydrogens on adjacent NH4 ions, in which case the decrease in γ_6 at the NH₄Br II-V boundary suggests an ordering process. However, the relative change in γ_6 here is not so large as at the NH₄Cl "II"-IV transition where the corresponding γ_6 's (from fundamental and overtone) are 1.3 and 0.29. That the NH₄Br II-V transition is an ordering process also is supported by the low-temperature elastic-constant measurements which indicate an entropy decrease [5]. The precise value of the entropy change or whether the entropy change is mostly vibrational or configurational is not known. The "average" structure of NH₄Br V is believed to be cubic and different from the ordered structure of NH₄Br IV [5].

The assignment and relationship between phases in NH_4Br and NH_4Cl can best be considered in terms of the generalized NH_4X phase diagram [18] in fig. 4. NH_4Cl "II" is relabeled as NH_4Cl V for reasons cited above. It is reasonable that NH_4Cl "II" with smaller lattice constant should have the same structure as the high-pressure phase of NH_4Br V. This relabeling suggests the possible existence of another NH_4Cl phase at high temperatures. Bridgman's observation of a

Fig. 3. Phase diagram for NH_4Br . Open circles with error bars represent literature values [5, 16-18].

weak transition at 348°K and 5 kbar supports the existence of such a phase [19]. Preliminary Raman studies of NH₄Cl also indicate a subtle change around 355° K and 8 kbar that also may be associated with this transition. The gradual nature and the weakness of the transition is indicated by the very small change in the slope of the frequency—pressure isotherm. Furthermore, in the lower-pressure phase of this transition, v_5 (TO) and its low-frequency shoulder can no longer be resolved.

3.3. Other observations

The present Raman studies show that the spectra of $NH_4Br II$, V and IV are closely related. The fundamental and many other peaks remaining basically the same throughout the three phases; however, the in-

Fig. 4. Generalized phase diagram for NH_4Cl , NH_4Br and NH_4I . The suggested II-V phase boundary for NH_4Cl is indicated by the dotted line (---).

tensities and numbers of lattice modes differ between phases. The ordered phase has the simplest spectrum. In the polarization spectra of "disordered" NH₄Br II (300°K and 1 atm), only a few modes are active for all polarizations of the incident light, and the spectrum does not appear to resemble the calculated onephonon density of states [20]. In the polarization spectra of both "disordered" NH₄Cl "II" and NH₄Br II, the fundamental modes have Raman tensors expected for the ordered state. Many modes (table 1) in NH₄Br II, NH₄Br V and NH₄Cl "II" spectra have intensities comparable to the fundamentals but are only active in the "disordered" phase. The low-frequency modes at 95 cm⁻¹ in NH₄Cl and 56 cm⁻¹ in NH4Br are believed to be "zone-edge" transverse acoustic modes [14,21,22]. The experimental dispersion curves for NH₄Cl at 78°K [23, 24] and the calculated one for NH₄Br [20] suggest that other modes listed in table 1 are also "zone-edge" modes.

4. Summary

The experimental results described above indicate some of the complexity of the Raman spectra of NH₄Br and NH₄Cl. The results on the polarization characteristics, implied order of NH4Cl "II", multiple phase transition, and presence of many strong "zoneedge" modes are difficult to explain in the context of present theoretical understanding of crystals with orientational disorder [21, 22, 25]. The results suggest some order even in NH₄Br II, which may be only correlated reorientations. The estimated reorientation rate $(10^{11} \text{ sec}^{-1} \text{ at } 300^{\circ} \text{K})$ of the NH⁺₄ ion is much longer than the duration of the Raman excitation process [26, 27]. This can give the appearance of order. Recent diffuse neutron and X-ray studies also indicate the existence of spatial correlation in both NH₄Br and NH₄Cl [28–30]. Diffuse neutron peaks have been found in NH₄Br II at position which become superstructure reflection in NH₄Br III. Correlated displacements of the Br⁻ ions in NH₄Br II have also been detected in the diffuse X-ray studies. Both the large thermal factors for Br and Cl ion in neutron diffraction study of the "disordered" phase [1-3]and the occurrence of correlated displacement of the Br⁻ ion suggest doubling of CsCl-like structure with antiparallel orientations of the adjacent NH⁺₄ ions in

 $NH_4Br II$, $NH_4Br V$ and NH_4Cl "II". In such a case, zone-edge modes can become allowed zone center modes [31]. The difference between $NH_4Br II$ and V (NH_4Cl "II") might involve the arrangement of the doubled cell, with the arrangement of $NH_4Br V$ involving a smaller amount of H–H repulsion between adjacent NH_4^+ ions.

Acknowledgement

The author is greatly indebted to Dr. Nicol for much encouragement and for the generous use of the high-pressure and Raman equipment. Special thanks are also due to Dr. R.S. Katiyar (University of Southern California) for many valuable discussions and for the computer program employed in calculating the Raman frequencies.

References

- [1] H.A. Levy and S.W. Peterson, Phys. Rev. 86 (1952) 766.
- [2] H.A. Levy and S.W. Peterson, J. Am. Chem. Soc. 75 (1953) 1536.
- [3] H.A. Levy and S.W. Peterson, Phys. Rev. 83 (1951) 1270.
- [4] V. Hovi, Proc. Intern. Conf. Sci. Tech. Non-Metallic Crystals, New Delhi, India (1969) p. 67.
- [5] C.W. Garland and R.A. Young, J. Chem. Phys. 49 (1968) 5282.
- [6] Y. Ebisuzaki, Bull. Am. Phys. Soc. 17 (1972) 314.
- [7] M. Nicol, Y. Ebisuzaki, W.D. Ellenson and A. Karim, Rev. Sci. Instr. 43 (1972) 1368.
- [8] Gmelins Handbuch der Anorganischen Chemie, Syst. Nr. 23 (Verlag Chemie, Berlin, 1936) p. 163.
- [9] V. Hovi and P. Pyykkö, Phys. Kond. Mater. 5 (1966) 1.
- [10] Y. Ebisuzaki and M. Nicol, Chem. Phys. Letters 3 (1969) 480.
- [11] Y. Ebisuzaki, Temperature and pressure induced phase transitions in NH₄Cl and NH₄Br, to be published.
- [12] C.W. Garland and N.W. Schumaker, J. Phys. Chem. Solids 28 (1971) 799.
- [13] L. Couture and J.P. Mathieu, Proc. Indian Acad. Sci. 28A (1948) 401.
- [14] C.H. Wang and P.A. Fleury, in: Light scattering spectra of solids, ed. G.B. Wright (Springer, Berlin, 1968) p. 651.
- [15] R. Loudon, Advan. Phys. 13 (1964) 423.
- [16] P.W. Bridgman, Phys. Rev. 38 (1931) 182.
- [17] C.C. Stephenson and H.E. Adams, J. Chem. Phys. 20 (1952) 1658.
- [18] R. Stevenson, J. Chem. Phys. 34 (1961) 1757.
- [19] P.W. Bridgman, Phys. Rev. 70 (1946) 425.

CHEMICAL PHYSICS LETTERS

15 April 1973

- [20] J. Govendarajan and T.M. Haridasan, Indian J. Pure Appl. Phys. 8 (1970) 376.
- [21] C.H. Wang and R.B. Wright, J. Chem. Phys. 56 (1972) 2124.
- [22] J.B. Sokoloff, Phys. Rev. B5 (1972) 4962.
- [23] G. Venkataraman and V.C. Sahni, Rev. Mod. Phys. 42 (1970) 409.
- [24] E.R. Cowley, Phys. Rev. B3 (1971) 2743.
- [25] H. Böttger, Phys. Stat. Sol. 49b (1972) 795.

- [26] D.E. Woessner and B.S. Snowden, J. Chem. Phys. 47 (1967) 378.
- [27] E.M. Purcell, Physica 17 (1952) 282.
- [28] R.S. Seymour, Acta Cryst. A27 (1971) 348.
- [29] H. Terauchi, Y. Noda and Y. Yamada, J. Phys. Soc. Japan 32 (1972) 1560.
- [30] D. Renz, K. Breutner and H. Dachs, Solid State Commun. 11 (1972) 879.
- [31] L. Patrick, Phys. Rev. 167C (1968) 809.